Peano
|
Lagrange Basis with a diagonal mass matrix. More...
Public Member Functions | |
__init__ (self, polynomial_order) | |
__str__ (self) | |
init_dictionary_with_default_parameters (self, dictionary, use_multidimensional_arrays) | |
To be implemented by subclass. | |
quadrature_points (self) | |
quadrature_weights (self) | |
value1d (self, x, number) | |
Return the numberth shape function's value at x. | |
derivative1d (self, x, number) | |
Return the numberth shape function's derivative at x. | |
Public Member Functions inherited from exahype2.solvers.LagrangeBasis.LagrangeBasis | |
order (self) | |
dofs_per_axis (self) | |
Data Fields | |
dofs_per_axis | |
Protected Attributes | |
_polynomial_order | |
Protected Attributes inherited from exahype2.solvers.LagrangeBasis.LagrangeBasis | |
_polynomial_order | |
_render_digits | |
Private Member Functions | |
__compute_barycentric_weights (self) | |
See Eq. | |
__compute_mass_matrix_diagonal (self) | |
Reference mass matrix. | |
__compute_stiffness_operator (self) | |
Computes the (reference) element stiffness matrix for an approximation of order self.__max_poly_order. | |
__compute_interpolation_matrix (self) | |
compute the interpolation matrix, which used to prepare halo layer data for fine grid points at the refinement boundary. | |
__compute_restriction_matrix (self) | |
compute the restriction matrix, which used to prepare halo layer data for coarse cells at the refinement boundary. | |
__compute_K1 (self) | |
__compute_derivative_operator (self) | |
__compute_fine_grid_projector (self, j) | |
__compute_basis_function_values_left (self) | |
Compute per basis function what the very left value of the polynomial would be. | |
__compute_equidistant_grid_projector (self) | |
Private Attributes | |
__quadrature_points | |
__num_points | |
Static Private Attributes | |
__repr__ = __str__ | |
Lagrange Basis with a diagonal mass matrix.
Class representing an abstract Lagrange basis which is used as a factory mechanism to produce vectors and matrices that we need within DG solvers. Never use this class directly, but always a subclass. As with all basis classes, the most relevant routine for a user is init_dictionary_with_default_parameters() which is a routine to befill a map with replacement rules, i.e. with the precomputed matrices and vectors. The class assumes that the mass matrix is a diagonal matrix. This is not true in general, i.e. holds only for Gauss-Legendre sampling points, but you might want to work with lumped matrices, and then this class is the right starting point.
Further to the initialisation, some using classes use quadrature_points_and_weights(). The exahype2.solvers.rkdg.RungeKuttaDG solver for example uses it to initialise the mapping of the plotter properly.
I decided to "outsource" the documentation of the individual fields to class attributes of their own. This way, they are visible both in the doxygen documentation and I can pipe them into the generated C++ code.
The first version of this utility class has been written by Dominic E. Charrier. It relied on NumPy and SymPy in several places. The current version is stripped down and solely uses SciPy.
Definition at line 25 of file LagrangeBasisWithDiagonalMassMatrix.py.
exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.__init__ | ( | self, | |
polynomial_order ) |
Reimplemented from exahype2.solvers.LagrangeBasis.LagrangeBasis.
Reimplemented in exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.GaussLegendreBasis, and exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.GaussLobattoBasisWithLumpedDiagonalBasis.
Definition at line 70 of file LagrangeBasisWithDiagonalMassMatrix.py.
References exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.__init__().
Referenced by exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.__init__().
|
private |
See Eq.
3.2 in https://people.maths.ox.ac.uk/trefethen/barycentric.pdf
Definition at line 212 of file LagrangeBasisWithDiagonalMassMatrix.py.
References exahype2.solvers.aderdg.LagrangeBasis.LagrangeBasis.__num_points, and exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.__num_points.
|
private |
Compute per basis function what the very left value of the polynomial would be.
Definition at line 404 of file LagrangeBasisWithDiagonalMassMatrix.py.
References exahype2.solvers.LagrangeBasis.LagrangeBasis.dofs_per_axis(), exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.dofs_per_axis, peano4.toolbox.blockstructured.ReconstructPatchAndApplyFunctor.ReconstructPatchAndApplyFunctor.dofs_per_axis, and exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.value1d().
Referenced by exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.init_dictionary_with_default_parameters().
|
private |
Definition at line 357 of file LagrangeBasisWithDiagonalMassMatrix.py.
References exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.derivative1d(), exahype2.solvers.LagrangeBasis.LagrangeBasis.dofs_per_axis(), exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.dofs_per_axis, peano4.toolbox.blockstructured.ReconstructPatchAndApplyFunctor.ReconstructPatchAndApplyFunctor.dofs_per_axis, exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.quadrature_points(), exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.GaussLegendreBasis.quadrature_points(), exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.GaussLobattoBasisWithLumpedDiagonalBasis.quadrature_points(), and exahype2.solvers.aderdg.LagrangeBasis.LagrangeBasis.quadrature_points().
Referenced by exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.init_dictionary_with_default_parameters().
|
private |
Transforms the degrees of freedom located at non-equidistant Lagrange support points quadrature_points to degrees of freedoms located at quadrature_points of an equidistant grid over (0,1).
Let us denote by P the projection operator (= equidistantGridProjector). The equidistant DoF are computed according to:
u^eq_i = sum_{m} P_im u^DG_m
Returns: equidistantGridProjector: The corresponding degrees of freedom located at quadrature_points of an equidistant grid over (0,1).
Definition at line 416 of file LagrangeBasisWithDiagonalMassMatrix.py.
References exahype2.solvers.aderdg.LagrangeBasis.LagrangeBasis.__evaluate(), exahype2.solvers.aderdg.LagrangeBasis.LagrangeBasis.__num_points, and exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.__num_points.
|
private |
Transforms the degrees of freedom located on a coarse grid edge quadrature_points to degrees of freedoms located on quadrature_points of a fine grid edge. The difference in levels is 1.
Let us denote by P the fine grid projector (= equidistantGridProjector). The fine grid DoF are computed according to:
u^{fine;j}_i = sum_{m} P^{j}_im u^{coarse}_m
Args: j: subinterval index
Returns: fineGridProjector: Operator to express polynomial function associated with original interval with basis functions associated with subinterval j
Definition at line 373 of file LagrangeBasisWithDiagonalMassMatrix.py.
References exahype2.solvers.aderdg.LagrangeBasis.LagrangeBasis.__evaluate(), exahype2.solvers.aderdg.LagrangeBasis.LagrangeBasis.__num_points, exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.__num_points, exahype2.solvers.aderdg.LagrangeBasis.LagrangeBasis.__quadrature_points, and exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.__quadrature_points.
|
private |
compute the interpolation matrix, which used to prepare halo layer data for fine grid points at the refinement boundary.
The matrix is only 1d mapping, i.e. used for "surface" of a 2D domain and have a size of 3Dof \times Dof. Its elements are \phi_j(x^f_i), i.e. the value of basis functions for coarse grid on fine grid point. In practive we multiply this matrix to vector of weight in coarse grid (u^c_i):
\phi_j(x^f_i)*u^c_i=u^c(x^f_i)
u^c(x) is the original solution on coarse grid. Thus the result is actually the evaluation of coarse solution on fine grid position
We can also use the same matrix to interpolate along the normal direction.
Definition at line 265 of file LagrangeBasisWithDiagonalMassMatrix.py.
Referenced by exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.init_dictionary_with_default_parameters().
|
private |
Computes the difference between the reference element mass operator evaluated at point xi=1.0 and the element stiffness matrix.
:return: delta between the reference element mass operator at point xi=1.0 and the element stiffness matrix
Definition at line 328 of file LagrangeBasisWithDiagonalMassMatrix.py.
References exahype2.solvers.aderdg.LagrangeBasis.LagrangeBasis.__evaluate(), exahype2.solvers.aderdg.LagrangeBasis.LagrangeBasis.__num_points, exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.__num_points, and exahype2.solvers.aderdg.LagrangeBasis.LagrangeBasis.__stiffness_operator.
|
private |
Reference mass matrix.
See class documentation. I moved the docu there, as doxygen does not extract documentation from private routines in Python.
Definition at line 229 of file LagrangeBasisWithDiagonalMassMatrix.py.
References exahype2.solvers.LagrangeBasis.LagrangeBasis.dofs_per_axis(), exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.dofs_per_axis, and peano4.toolbox.blockstructured.ReconstructPatchAndApplyFunctor.ReconstructPatchAndApplyFunctor.dofs_per_axis.
Referenced by exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.init_dictionary_with_default_parameters().
|
private |
compute the restriction matrix, which used to prepare halo layer data for coarse cells at the refinement boundary.
the matrix formulation depends on the interpolation scheme.
The matrix is only 1d mapping, i.e. used for "surface" of a 2D domain and have a size of Dof \times 3Dof.
We can also use the same matrix to interpolate along the normal direction.
Definition at line 299 of file LagrangeBasisWithDiagonalMassMatrix.py.
References exahype2.solvers.LagrangeBasis.LagrangeBasis._polynomial_order, exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix._polynomial_order, exahype2.solvers.LagrangeBasis.LagrangeBasis.dofs_per_axis(), exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.dofs_per_axis, peano4.toolbox.blockstructured.ReconstructPatchAndApplyFunctor.ReconstructPatchAndApplyFunctor.dofs_per_axis, exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.quadrature_points(), exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.GaussLegendreBasis.quadrature_points(), exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.GaussLobattoBasisWithLumpedDiagonalBasis.quadrature_points(), exahype2.solvers.aderdg.LagrangeBasis.LagrangeBasis.quadrature_points(), and exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.value1d().
Referenced by exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.init_dictionary_with_default_parameters().
|
private |
Computes the (reference) element stiffness matrix for an approximation of order self.__max_poly_order.
Definition at line 246 of file LagrangeBasisWithDiagonalMassMatrix.py.
References exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.derivative1d(), exahype2.solvers.LagrangeBasis.LagrangeBasis.dofs_per_axis(), exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.dofs_per_axis, peano4.toolbox.blockstructured.ReconstructPatchAndApplyFunctor.ReconstructPatchAndApplyFunctor.dofs_per_axis, and exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.value1d().
Referenced by exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.init_dictionary_with_default_parameters().
exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.__str__ | ( | self | ) |
Definition at line 74 of file LagrangeBasisWithDiagonalMassMatrix.py.
References peano4.output.ActionSet.ActionSet.__class__, peano4.output.Jinja2TemplatedHeaderImplementationFilePair.Jinja2TemplatedHeaderImplementationFilePair.__class__, peano4.output.Observer.Observer.__class__, peano4.output.TemplatedHeaderFile.TemplatedHeaderFile.__class__, peano4.output.TemplatedHeaderImplementationFilePair.TemplatedHeaderImplementationFilePair.__class__, exahype2.solvers.aderdg.LagrangeBasis.LagrangeBasis.init_dictionary_with_default_parameters(), exahype2.solvers.LagrangeBasis.LagrangeBasis.init_dictionary_with_default_parameters(), and exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.init_dictionary_with_default_parameters().
Referenced by peano4.toolbox.particles.postprocessing.ParticleVTUReader.VTUParticleSet.__repr__().
exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.derivative1d | ( | self, | |
x, | |||
number ) |
Return the numberth shape function's derivative at x.
u = sum_i u_i phi_i
=> d/dx u = sum_j (d/dx phi_j) u_j
To construct the gradient field, we make the ansatz:
grad u = sum_i g_i phi_i
=>
g_i = ( d/dx u, phi_i )_[0,1] / (phi_i,phi_i)_[0,1] = sum_j (d/dx phi_j, phi_i)_[0,1] / w_i
= w_i (d/dx phi_j) (x_i) / w_i = (d/dx phi_j) (x_i)
= DUDX^T
where DUDX is the operator computed by this function:
DUDX_ij = (d/dx phi_i) (x_j)
It can be further written as
DUDX_ij = 1/w_i * K^T_ij
where the stiffness matrix K is defined as
K_ij = <d/dx phi_i, phi_j>_[0,1] = w_j (d/dx phi_j) (x_i)
:return: transposed derivative operator
:note: If you want to use this operator to compute the gradient of the solution, you need to use the transpose.
Definition at line 553 of file LagrangeBasisWithDiagonalMassMatrix.py.
References exahype2.solvers.LagrangeBasis.LagrangeBasis.dofs_per_axis(), exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.dofs_per_axis, peano4.toolbox.blockstructured.ReconstructPatchAndApplyFunctor.ReconstructPatchAndApplyFunctor.dofs_per_axis, exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.quadrature_points(), exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.GaussLegendreBasis.quadrature_points(), exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.GaussLobattoBasisWithLumpedDiagonalBasis.quadrature_points(), and exahype2.solvers.aderdg.LagrangeBasis.LagrangeBasis.quadrature_points().
Referenced by exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.__compute_derivative_operator(), and exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.__compute_stiffness_operator().
exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.init_dictionary_with_default_parameters | ( | self, | |
dictionary, | |||
use_multidimensional_arrays ) |
To be implemented by subclass.
multidimensional_arrays: Boolean If it is to False, all the matrices should be flattened into one array (C enumeration). If it is set, the matrices should be written down as proper two-dimensional arrays. Analogously, all inter-grid transfer operators either are represented as array or as d-dimensional construct.
Reimplemented from exahype2.solvers.LagrangeBasis.LagrangeBasis.
Definition at line 443 of file LagrangeBasisWithDiagonalMassMatrix.py.
References exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.__compute_basis_function_values_left(), exahype2.solvers.aderdg.LagrangeBasis.LagrangeBasis.__compute_derivative_operator(), exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.__compute_derivative_operator(), exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.__compute_interpolation_matrix(), exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.__compute_mass_matrix_diagonal(), exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.__compute_restriction_matrix(), exahype2.solvers.aderdg.LagrangeBasis.LagrangeBasis.__compute_stiffness_operator(), exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.__compute_stiffness_operator(), exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.BasisFunctionValuesLeft1dDocumentation, exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.DerivativeOperator1dDocumentation, exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.InterpolationMatrix1dDocumentation, exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.MassMatrix1dDocumentation, exahype2.solvers.aderdg.ADERDG.ADERDG.order(), exahype2.solvers.aderdg.LagrangeBasis.LagrangeBasis.order, exahype2.solvers.LagrangeBasis.LagrangeBasis.order(), exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.quadrature_points(), exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.GaussLegendreBasis.quadrature_points(), exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.GaussLobattoBasisWithLumpedDiagonalBasis.quadrature_points(), exahype2.solvers.aderdg.LagrangeBasis.LagrangeBasis.quadrature_points(), exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.quadrature_weights(), exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.GaussLegendreBasis.quadrature_weights(), exahype2.solvers.aderdg.LagrangeBasis.LagrangeBasis.quadrature_weights(), exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.QuadraturePoints1dDocumentation, exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.QuadratureWeights1dDocumentation, exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.RestrictionMatrix1dDocumentation, and exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.StiffnessOperator1dDocumentation.
Referenced by exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.__str__().
exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.quadrature_points | ( | self | ) |
Reimplemented in exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.GaussLegendreBasis, and exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.GaussLobattoBasisWithLumpedDiagonalBasis.
Definition at line 519 of file LagrangeBasisWithDiagonalMassMatrix.py.
Referenced by exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.__compute_derivative_operator(), exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.__compute_restriction_matrix(), exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.derivative1d(), exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.init_dictionary_with_default_parameters(), and exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.value1d().
exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.quadrature_weights | ( | self | ) |
Reimplemented in exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.GaussLegendreBasis.
Definition at line 525 of file LagrangeBasisWithDiagonalMassMatrix.py.
Referenced by exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.init_dictionary_with_default_parameters().
exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.value1d | ( | self, | |
x, | |||
number ) |
Return the numberth shape function's value at x.
This equals Dominic's old evaluate function, but that one evaluated all the polynomials in one rush, whereas this one only looks at shape function number number. Also, Dominic's version did both the value and the derivative. I split this one up into two version.
Definition at line 529 of file LagrangeBasisWithDiagonalMassMatrix.py.
References exahype2.solvers.LagrangeBasis.LagrangeBasis.dofs_per_axis(), exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.dofs_per_axis, peano4.toolbox.blockstructured.ReconstructPatchAndApplyFunctor.ReconstructPatchAndApplyFunctor.dofs_per_axis, exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.quadrature_points(), exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.GaussLegendreBasis.quadrature_points(), exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.GaussLobattoBasisWithLumpedDiagonalBasis.quadrature_points(), and exahype2.solvers.aderdg.LagrangeBasis.LagrangeBasis.quadrature_points().
Referenced by exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.__compute_basis_function_values_left(), exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.__compute_restriction_matrix(), and exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.__compute_stiffness_operator().
|
private |
Definition at line 344 of file LagrangeBasisWithDiagonalMassMatrix.py.
Referenced by exahype2.solvers.aderdg.LagrangeBasis.LagrangeBasis.__compute_barycentric_weights(), exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.__compute_barycentric_weights(), exahype2.solvers.aderdg.LagrangeBasis.LagrangeBasis.__compute_derivative_operator(), exahype2.solvers.aderdg.LagrangeBasis.LagrangeBasis.__compute_equidistant_grid_projector(), exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.__compute_equidistant_grid_projector(), exahype2.solvers.aderdg.LagrangeBasis.LagrangeBasis.__compute_fine_grid_projector(), exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.__compute_fine_grid_projector(), exahype2.solvers.aderdg.LagrangeBasis.LagrangeBasis.__compute_K1(), exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.__compute_K1(), exahype2.solvers.aderdg.LagrangeBasis.LagrangeBasis.__compute_mass_matrix(), exahype2.solvers.aderdg.LagrangeBasis.LagrangeBasis.__compute_stiffness_operator(), and exahype2.solvers.aderdg.LagrangeBasis.LagrangeBasis.__evaluate().
|
private |
Definition at line 220 of file LagrangeBasisWithDiagonalMassMatrix.py.
Referenced by exahype2.solvers.aderdg.LagrangeBasis.LagrangeBasis.__compute_barycentric_weights(), exahype2.solvers.aderdg.LagrangeBasis.LagrangeBasis.__compute_derivative_operator(), exahype2.solvers.aderdg.LagrangeBasis.LagrangeBasis.__compute_fine_grid_projector(), exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.__compute_fine_grid_projector(), exahype2.solvers.aderdg.LagrangeBasis.LagrangeBasis.__compute_stiffness_operator(), exahype2.solvers.aderdg.LagrangeBasis.LagrangeBasis.__evaluate(), and exahype2.solvers.aderdg.LagrangeBasis.LagrangeBasis.quadrature_points().
|
staticprivate |
Definition at line 80 of file LagrangeBasisWithDiagonalMassMatrix.py.
|
protected |
Definition at line 281 of file LagrangeBasisWithDiagonalMassMatrix.py.
Referenced by exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.__compute_restriction_matrix(), exahype2.solvers.LagrangeBasis.LagrangeBasis.dofs_per_axis(), exahype2.solvers.LagrangeBasis.LagrangeBasis.order(), exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.GaussLegendreBasis.quadrature_points(), and exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.GaussLegendreBasis.quadrature_weights().
|
static |
Definition at line 170 of file LagrangeBasisWithDiagonalMassMatrix.py.
Referenced by exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.init_dictionary_with_default_parameters().
|
static |
Definition at line 187 of file LagrangeBasisWithDiagonalMassMatrix.py.
Referenced by exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.init_dictionary_with_default_parameters().
exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.dofs_per_axis |
Definition at line 238 of file LagrangeBasisWithDiagonalMassMatrix.py.
Referenced by exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.__compute_basis_function_values_left(), exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.__compute_derivative_operator(), exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.__compute_mass_matrix_diagonal(), exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.__compute_restriction_matrix(), exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.__compute_stiffness_operator(), peano4.toolbox.blockstructured.ReconstructPatchAndApplyFunctor.ReconstructPatchAndApplyFunctor._add_action_set_entries_to_dictionary(), exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.derivative1d(), exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.GaussLobattoBasisWithLumpedDiagonalBasis.quadrature_points(), and exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.value1d().
|
static |
Definition at line 198 of file LagrangeBasisWithDiagonalMassMatrix.py.
Referenced by exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.init_dictionary_with_default_parameters().
|
static |
Definition at line 109 of file LagrangeBasisWithDiagonalMassMatrix.py.
Referenced by exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.init_dictionary_with_default_parameters().
|
static |
Definition at line 83 of file LagrangeBasisWithDiagonalMassMatrix.py.
Referenced by exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.init_dictionary_with_default_parameters().
|
static |
Definition at line 95 of file LagrangeBasisWithDiagonalMassMatrix.py.
Referenced by exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.init_dictionary_with_default_parameters().
|
static |
Definition at line 205 of file LagrangeBasisWithDiagonalMassMatrix.py.
Referenced by exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.init_dictionary_with_default_parameters().
|
static |
Definition at line 140 of file LagrangeBasisWithDiagonalMassMatrix.py.
Referenced by exahype2.solvers.LagrangeBasisWithDiagonalMassMatrix.LagrangeBasisWithDiagonalMassMatrix.init_dictionary_with_default_parameters().