![]() |
Peano
|
CCZ4 solver using Runge-Kutta Discontinuous Galerkin and global adaptive time stepping incl enclave tasking. More...
Public Member Functions | |
__init__ (self, name, rk_order, polynomials, min_cell_h, max_cell_h, pde_terms_without_state) | |
Construct solver with enclave tasking. | |
add_tracer (self, name, coordinates, project, number_of_entries_between_two_db_flushes, data_delta_between_two_snapsots, time_delta_between_two_snapsots, clear_database_after_flush, tracer_unknowns) | |
Add tracer to project. | |
![]() | |
enable_second_order (self) | |
add_all_solver_constants (self) | |
Add domain-specific constants. | |
add_makefile_parameters (self, peano4_project, path_of_ccz4_application) | |
Add include path and minimal required cpp files to makefile. | |
![]() | |
set_implementation (self, flux=None, ncp=None, eigenvalues=None, boundary_conditions=None, refinement_criterion=None, initial_conditions=None, source_term=None, point_source=None, additional_action_set_includes="", additional_user_includes="") | |
If you pass in User_Defined, then the generator will create C++ stubs that you have to befill manually. | |
user_action_set_includes (self) | |
Add further includes to this property, if your action sets require some additional routines from other header files. | |
![]() | |
create_data_structures (self) | |
First, call the superclass' create_data_structures() to ensure that all the data structures are in place. | |
create_action_sets (self) | |
Call superclass routine and then reconfigure the update cell call. | |
add_implementation_files_to_project (self, namespace, output, dimensions, subdirectory="") | |
The ExaHyPE project will call this operation when it sets up the overall environment. | |
add_actions_to_perform_time_step (self, step) | |
Add enclave aspect to time stepping. | |
add_entries_to_text_replacement_dictionary (self, d) | |
switch_storage_scheme (self, Storage cell_data_storage, Storage face_data_storage) | |
By default, we hold all data on the call stacks. | |
![]() | |
__str__ (self) | |
get_min_number_of_spacetree_levels (self, domain_size) | |
get_max_number_of_spacetree_levels (self, domain_size) | |
get_coarsest_number_of_cells (self, domain_size) | |
get_finest_number_of_cells (self, domain_size) | |
create_readme_descriptor (self, domain_offset, domain_size) | |
user_solver_includes (self) | |
Add further includes to this property, if your solver requires some additional routines from other header files. | |
add_user_action_set_includes (self, value) | |
Add further includes to this property, if your action sets require some additional routines from other header files. | |
add_user_solver_includes (self, value) | |
Add further includes to this property, if your solver requires some additional routines from other header files. | |
get_name_of_global_instance (self) | |
add_to_Peano4_datamodel (self, datamodel, verbose) | |
Add all required data to the Peano4 project's datamodel so it is properly built up. | |
add_use_data_statements_to_Peano4_solver_step (self, step) | |
Tell Peano what data to move around. | |
add_actions_to_init_grid (self, step) | |
Add the action sets to the grid initialisation. | |
add_actions_to_create_grid (self, step, evaluate_refinement_criterion) | |
set_plot_description (self, description) | |
Use this one to set a description within the output patch file that tells the vis solver what the semantics of the entries are. | |
add_actions_to_plot_solution (self, step, output_path) | |
Dump snapshot of solution. | |
set_solver_constants (self, datastring) | |
add_solver_constants (self, datastring) | |
unknowns (self) | |
auxiliary_variables (self) | |
unknowns (self, value) | |
auxiliary_variables (self, value) | |
number_of_Runge_Kutta_steps (self) | |
postprocess_updated_cell_after_Runge_Kutta_step (self) | |
postprocess_updated_cell_after_final_linear_combination (self) | |
postprocess_updated_cell_after_Runge_Kutta_step (self, kernel) | |
Define a postprocessing routine over the data. | |
postprocess_updated_cell_after_final_linear_combination (self, kernel) | |
Define a postprocessing routine over the data. | |
CCZ4 solver using Runge-Kutta Discontinuous Galerkin and global adaptive time stepping incl enclave tasking.
The constructor of this classs is straightforward and realises the standard steps of any numerical implementation of the CCZ4 scheme:
Definition at line 1348 of file CCZ4Solver.py.
CCZ4Solver.CCZ4Solver_RKDG_GlobalAdaptiveTimeStepWithEnclaveTasking.__init__ | ( | self, | |
name, | |||
rk_order, | |||
polynomials, | |||
min_cell_h, | |||
max_cell_h, | |||
pde_terms_without_state ) |
Construct solver with enclave tasking.
Reimplemented from CCZ4Solver.AbstractCCZ4Solver.
Definition at line 1376 of file CCZ4Solver.py.
References CCZ4Solver.AbstractCCZ4Solver._add_standard_includes(), CCZ4Solver.AbstractCCZ4Solver._FO_formulation_unknowns, CCZ4Solver.construct_DG_eigenvalues(), CCZ4Solver.construct_DG_ncp(), CCZ4Solver.construct_DG_postprocessing_kernel(), CCZ4Solver.construct_DG_source_term(), exahype2.solvers.rkdg.RungeKuttaDG.RungeKuttaDG.postprocess_updated_cell_after_final_linear_combination(), exahype2.solvers.rkdg.RungeKuttaDG.RungeKuttaDG.postprocess_updated_cell_after_final_linear_combination(), exahype2.solvers.fv.EnclaveTasking.EnclaveTasking.set_implementation(), exahype2.solvers.fv.SingleSweep.SingleSweep.set_implementation(), exahype2.solvers.aderdg.ADERDG.ADERDG.set_implementation(), exahype2.solvers.rkfd.OneSweepPerRungeKuttaStep.OneSweepPerRungeKuttaStep.set_implementation(), exahype2.solvers.rkfd.SeparateSweeps.SeparateSweeps.set_implementation(), exahype2.solvers.rkdg.rusanov.GlobalFixedTimeStep.GlobalFixedTimeStep.set_implementation(), exahype2.solvers.fv.musclhancock.GlobalAdaptiveTimeStep.GlobalAdaptiveTimeStep.set_implementation(), exahype2.solvers.fv.musclhancock.GlobalFixedTimeStep.GlobalFixedTimeStep.set_implementation(), exahype2.solvers.fv.rusanov.GlobalAdaptiveTimeStep.GlobalAdaptiveTimeStep.set_implementation(), exahype2.solvers.fv.rusanov.GlobalAdaptiveTimeStepWithEnclaveTasking.GlobalAdaptiveTimeStepWithEnclaveTasking.set_implementation(), exahype2.solvers.fv.rusanov.GlobalFixedTimeStep.GlobalFixedTimeStep.set_implementation(), exahype2.solvers.fv.rusanov.GlobalFixedTimeStepWithEnclaveTasking.GlobalFixedTimeStepWithEnclaveTasking.set_implementation(), exahype2.solvers.fv.rusanov.LocalTimeStepWithEnclaveTasking.LocalTimeStepWithEnclaveTasking.set_implementation(), exahype2.solvers.fv.rusanov.SubcyclingAdaptiveTimeStepWithEnclaveTasking.SubcyclingAdaptiveTimeStepWithEnclaveTasking.set_implementation(), exahype2.solvers.fv.rusanov.SubcyclingFixedTimeStep.SubcyclingFixedTimeStep.set_implementation(), exahype2.solvers.fv.rusanov.SubcyclingFixedTimeStepWithEnclaveTasking.SubcyclingFixedTimeStepWithEnclaveTasking.set_implementation(), exahype2.solvers.aderdg.GlobalAdaptiveTimeStep.GlobalAdaptiveTimeStep.set_implementation(), exahype2.solvers.aderdg.GlobalFixedTimeStep.GlobalFixedTimeStep.set_implementation(), exahype2.solvers.rkdg.RungeKuttaDG.RungeKuttaDG.set_implementation(), exahype2.solvers.rkdg.rusanov.GlobalAdaptiveTimeStep.GlobalAdaptiveTimeStep.set_implementation(), exahype2.solvers.rkdg.rusanov.GlobalAdaptiveTimeStepWithEnclaveTasking.GlobalAdaptiveTimeStepWithEnclaveTasking.set_implementation(), exahype2.solvers.rkfd.fd4.GlobalAdaptiveTimeStep.GlobalAdaptiveTimeStep.set_implementation(), exahype2.solvers.rkfd.fd4.GlobalAdaptiveTimeStepWithEnclaveTasking.GlobalAdaptiveTimeStepWithEnclaveTasking.set_implementation(), exahype2.solvers.rkfd.fd4.GlobalFixedTimeStep.GlobalFixedTimeStep.set_implementation(), exahype2.solvers.fv.riemann.GlobalAdaptiveTimeStep.GlobalAdaptiveTimeStep.set_implementation(), exahype2.solvers.fv.riemann.GlobalAdaptiveTimeStepWithEnclaveTasking.GlobalAdaptiveTimeStepWithEnclaveTasking.set_implementation(), exahype2.solvers.fv.riemann.GlobalFixedTimeStep.GlobalFixedTimeStep.set_implementation(), and exahype2.solvers.fv.riemann.GlobalFixedTimeStepWithEnclaveTasking.GlobalFixedTimeStepWithEnclaveTasking.set_implementation().
CCZ4Solver.CCZ4Solver_RKDG_GlobalAdaptiveTimeStepWithEnclaveTasking.add_tracer | ( | self, | |
name, | |||
coordinates, | |||
project, | |||
number_of_entries_between_two_db_flushes, | |||
data_delta_between_two_snapsots, | |||
time_delta_between_two_snapsots, | |||
clear_database_after_flush, | |||
tracer_unknowns ) |
Add tracer to project.
Consult exahype2.tracer.DumpTracerIntoDatabase for an explanation of some of the arguments. Most of them are simply piped through to this class.
At this point, we have not yet created the Peano 4 project. Therefore, we have not yet befilled the time stepping action set.
project: exahype2.Project
Reimplemented from CCZ4Solver.AbstractCCZ4Solver.
Definition at line 1419 of file CCZ4Solver.py.
References CCZ4Solver.add_tracer_to_DG_solver().