7 def __init__(self, normalised_time_step_size):
12 The outcome is used before we actually roll over the accumulation variables
17 tarch::mpi::Rank::getInstance().isGlobalMaster()
21 isFirstGridSweepOfTimeStep()
23 logInfo("startTimeStep(...)", "Solver {{SOLVER_NAME}}:" );
24 logInfo("startTimeStep(...)", "t = " << _minTimeStampThisTimeStep);
25 logInfo("startTimeStep(...)", "dt = " << getTimeStepSize());
26 logInfo("startTimeStep(...)", "h_{min} = " << _minCellH);
27 logInfo("startTimeStep(...)", "h_{max} = " << _maxCellH);
34 if (isLastGridSweepOfTimeStep()) {
35 assertion(_minCellH >= 0.0);
36 assertion(MaxAdmissibleCellH > 0.0);
37 if (_minCellH <= MaxAdmissibleCellH) {
40 +
""" * _minCellH / MaxAdmissibleCellH;
Code snippet generator for all fixed time stepping solvers.
create_finish_time_step_implementation(self)
__init__(self, normalised_time_step_size)
_normalised_time_step_size
create_start_time_step_implementation(self)
The outcome is used before we actually roll over the accumulation variables and other stuff.